Improving Speech Recognition Accuracy for Clinical Conversations
نویسندگان
چکیده
Accurate and comprehensive data form the lifeblood of health care. Unfortunately, there is much evidence that current data collection methods sometimes fail. Our hypothesis is that it should be possible to improve the thoroughness and quality of information gathered through clinical encounters by developing a computer system that (a) listens to a conversation between a patient and a provider, (b) uses automatic speech recognition technology to transcribe that conversation to text, (c) applies natural language processing methods to extract the important clinical facts from the conversation, (d) presents this information in real time to the participants, permitting correction of errors in understanding, and (e) organizes those facts into an encounter note that could serve as a first draft of the note produces by the clinician. In this thesis, we present our attempts to measure the performances of two state-of-the-art automatic speech recognizers (ASRs) for the task of transcribing clinical conversations, and explore the potential ways of optimizing these software packages for the specific task. In the course of this thesis, we have (1) introduced a new method for quantitatively measuring the difference between two language models and showed that conversational and dictational speech have different underlying language models, (2) measured the perplexity of clinical conversations and dictations and shown that spontaneous speech has a higher perplexity than dictational speech, (3) improved speech recognition accuracy by language adaptation using a conversational corpus, and (4) introduced a fast and simple algorithm for cross talk elimination in two speaker settings.
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملDeveloping a Standardized Medical Speech Recognition Database for Reconstructive Hand Surgery
Fast and holistic access to the patients’ clinical record is a major requirement of modern medical decision support systems (DSS). While electronic health records (EHRs) have replaced the traditional paper-based records in most healthcare organization, the data entry into these systems remains largely manual. Speech recognition technology promises substitution of the more convenient speech-base...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملTowards Natural Language Understanding of Partial Speech Recognition Results in Dialogue Systems
We investigate natural language understanding of partial speech recognition results to equip a dialogue system with incremental language processing capabilities for more realistic human-computer conversations. We show that relatively high accuracy can be achieved in understanding of spontaneous utterances before utterances are completed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012